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This paper  characterizes forbidden polyhedra, which are polyhedra with fewer 
than 9 vertices which cannot be formed using only the 9s, p, and d atomic 
orbitals. In this connection polyhedra are of particular interest if their sym- 
metry  groups are direct product groups of the type R • C's in which R is a 
group containing only proper  rotations and C's is either Cs or C~ in which 
the non-identity element is an inversion center or a reflection plane which is 
called the primary plane of the group R x C's. Using this terminology polyhedra 
of the following types are shown always to be forbidden potyhedra: (1) 
Polyhedra having 8 vertices, such direct product symmetry point groups, and 
either an inversion center or a primary plane fixing either 0 or 6 vertices; (2) 
Polyhedra having a 6-fold or higher Cn rotation axis. However,  these condi- 
tions are not necessary for a polyhedron to be forbidden since in addition to 
one 7-vertex polyhedron and ten 8-vertex polyhedra satisfying one or both 
of the above conditions there are two forbidden C3~ 8-vertex polyhedra which 
satisfy neither of the above conditions. 

Key words: Forbidden polyhedra- -Direc t  product g roups - -Symmet ry  
groups. 

1. Introduction 

Most elements above atomic number  10 have s, p, and d orbitals available to 
participate in chemical bonding through formation of appropriate  hybrid orbitals. 
Since such elements have one s orbital, three p orbitals, and five d orbitals, use 
of s, p, and d orbitals for chemical bonding can lead to coordination polyhedra 
with up to 9 ( =  1 + 3 + 5) vertices. However ,  there are some polyhedra with 8 
or less vertices which because of symmetry restrictions cannot be formed by any 

* For part 15 of this series see reference 1. 
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combination of s, p, and d orbitals: such polyhedra can be called forbidden 

polyhedra. The first paper of this series published in 1969 [2] describes some of 
these polyhedra as polyhedra of "zero flexibility". This paper systematizes for- 
bidden polyhedra in terms of the structure of their symmetry groups considered 
as permutation groups on their vertices. 

2. Background 

Consider the two groups G with m operations E, g2 . . . . .  gm and H with n 
operations E, h2 . . . . .  hn in which the operations of G and H are independent 
except for the identity. The direct product G • H contains m n  paired operations 
of the type EE,  g2E, . . . .  gmE, Eh2, g2h2 . . . . .  gmh2, Eh3, . . . , gm-l  hn, gmhn where 
E E  is the identity of G x H and where because of the independence of the 
operations of G and H the order of the paired operations in G • H is immaterial 
[3]. 

The direct product G x H has the following properties: 
(1) If G has the r conjugacy classes K1 = E, K2 . . . . .  K ,  and H has the s conjugacy 
classes L1 = E, L2 . . . .  , L ,  then the direct product G x H has the rs conjugacy classes 
K1L1 = E, K2L1 . . . . .  K,L1,  K1L2, K2L2 . . . . .  K,L2,  K1L3 . . . . .  Kr- lLs ,  K,Ls. The 
irreducible representations and their characters have a similar product structure. 
(2) The groups G and H are both normal subgroups of their direct product 
G x H where a normal subgroup is a subgroup consisting only of entire conjugacy 
classes. The direct product may also be regarded as a special case of the semi-direct 
product [4] G ^ H in which only the first of the two groups (namely G) needs 
to be a normal  subgroup of the product. The full definition of a semidirect product 
is considerably more complicated than that of a direct product. Furthermore,  
the conjugacy classes, irreducible representations, and characters of a semidirect 
product do not have a simple relationship to those of the factors in contrast to 
a direct product. 

All non-trivial symmetry point groups [5] except for Cs and Ci contain one or 
more proper rotations C, (n > 2) in addition to the identity. In addition the point 
groups other than Cn, Dn, T, O, and I contain one or more improper rotations 
Sn where S~ is a symmetry plane cr and S 2 is an inversion center i. All point 
groups containing improper rotations S~ are semidirect products of the type 
R ^ C's where C'~ is either Cs (i.e. E + or) or Ci (i.e. E + i) and R is a group 
consisting of only the identity and proper rotations. Note that R is a normal 
subgroup of the semidirect product R ^ C'~. For convenience the non-identity 
operation (namely cr or i) in the factor C's will be called a primary involution 
and designated as S' since this operation is particularly important in the context 
of this paper. Note that some point groups can have more than one primary 
involution. The point group C2~ is the most important point group of this type 
in the context of this paper. 

Some point groups are direct products of the type R • C's in which both R and 
C'~ are normal subgroups. These are listed in Table 1. Because of the direct 
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Table 1. Direct product structure of finite 
symmetry point groups having reflection 
planes and/or inversion centers 

G o = C 2 x G  
C2na = C2, x G = C2, x G 

C(2n+l )  h = C2n+l X C s 

Dana =D2n x G =D2~ x Cs 
D(an+l )  h = Dan+l X C s 

D (an+ a ) d = D a n +  l X C i 

84n+2 = C2n+ 1 X Ci 
Ta= T X G  
Oh=OxG 
I,, =1xc ,  

product structure the primary involution in such a group is in a class by itself. 
The character tables of these direct product point groups are 2r • 2r matrices of 
the following type in which r is the number of classes in R and X is an r • r 
matrix corresponding to the character table of R: 

In the character table (1) half of the characters for the primary involution are 
equal to the corresponding characters of the identity. The corresponding 
irreducible representations may be called the even or symmetrical irreducible 
representations since if the primary involution is an inversion, these irreducible 
representations are usually designated in character tables witb a " g "  for "gerade".  
The remaining half of the characters in (1) for the primary involution are the 
negative of the corresponding characters of the identity. The corresponding 
irreducible representations may be called the odd  or antisymmetrical irreducible 
representations since if the primary involution is an inversion these irreducible 
representations are normally designated in character tables with a " u "  for 
"ungerade".  A conclusion from these observations is that a reducible representa- 
tion with zero character for the primary involution must be the sum of an equal 
number of even and odd irreducible representations. More generally let d § and 
d -  be the sums of the dimensions of the even and odd irreducible representations, 
respectively, forming the reducible representation having a character x(S ' )  for 
the primary involution. Then 

x ( S ' )  = d + -  d - .  (2) 

Now consider the transformation properties of the 9s, p, and d orbitals in the 
C', groups C~ and C~. These are summarized in Table 2. Note that in both of 
these cases 6 of the orbitals are even or symmetrical and the remaining 3 orbitals 
are odd or antisymmetrical. 

Consider an 8-vertex polyhedron whose symmetry point group is a direct product 
R x C's. The character of the primary involution of the reducible representation 
corresponding to the vertex permutations under the symmetry point group is 
equal to the number of vertices which are not permuted by the primary involution 
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Table 2. Transformations of s, p, and d orbitals in two element C~ groups 

R. Bruce King 

Even s, p, and d orbitals 
C '  Group Number Types 

Odd s, p, and d orbitals 
Number Types 

Cs(~rxy) 6 S, Px, Py, dx2-y2, dxy, dz2 3 Pz, dxz, dyz 
Ci 6 S, dx2_y2, dz2, dx r, dxz, drz 3 Px, Py, Pz 
C2[C2(z)] 5 s, Pz, dx2-y2, dz2, dxy 4 Px, Py dx~, dy, 

(i.e. the number of points which remain fixed when the primary involution is 
applied). If the primary involution is an inversion, its character is necessarily 
zero since all vertices of a polyhedron are permuted by an inversion (i.e. an 
inversion fixes no vertices of a polyhedron). Therefore,  the reducible representa- 
tion of an 8-vertex polyhedron with an inversion center contains equal numbers 
of even and odd irreducible representations. This corresponds to a hybridization 
using 4 symmetrical and 4 antisymmetrical atomic orbitals. Since only 3 of the 
9s, p, and d orbitals are antisymmetrical (Table 2), an 8 vertex polyhedron with 
an inversion center cannot be formed using only s, p, and d orbitals. 

Similar arguments can also be used for 8-vertex polyhedra having a direct product 
group R • C's in which the primary involution is a reflection plane (called a 
primary plane). Such polyhedra with no vertices on a primary plane cannot be 
formed using only s, p, and d orbitals. However,  8-vertex polyhedra are also 
possible with 2, 4, or 6 vertices on a primary plane. In this case, the sums of the 
dimensions of even and odd irreducible representations can be found by the 
following equations derivable trivially from Eq. 2: 

d+=(v+x(S ' ) ) /2  (3a) 

d- = ( v - x ( S ' ) ) / 2 .  (3b) 

These equations indicate that 8 vertex polyhedra (v = 8) with 6 vertices on a 
primary plane have 7 even irreducible (one-dimensional) representations. Since 
the maximum number of even s, p, and d orbitals is 6 (see Table 2), such 8-vertex 
polyhedra are forbidden. 

Polyhedra with 7 vertices cannot have an inversion center but can have a primary 
plane provided that this plane contains 1, 3, or 5 of the 7 vertices. Equations 3a 
and 3b for v = 7 show that all of these situations lead to numbers of even and 
odd irreducible representations which can be accommodated by the s, p, and d 
orbitals (i.e. a maximum of 6 even irreducible one-dimensional representations 
for x(S') = 5 and a maximum of 3 odd irreducible one-dimensional representa- 
tions for x(S') = 1). Thus, no 7-vertex polyhedra are forbidden because of the 
wrong number of vertices being fixed by the primary plane in contrast to the 
situation with 8-vertex polyhedra discussed above. 

Another  feature leading to forbidden polyhedra is a rotation axis Cn where n/> 6. 
For example, no s, p, or d orbitals transform according to the B1 irreducible 
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representation arising from 6 vertices in a non-trivial orbit of a (76 rotation axis. 
Thus, the 7-vertex hexagonal pyramid is forbidden; this is the only forbidden 
7-vertex polyhedron. 

Formation of 9-vertex polyhedra using s, p, and d orbitals is more difficult. In 
this case, the symmetries of the irreducible representations corresponding to the 
vertices of the polyhedron must match perfectly the symmetries of the 9s, p, and 
d orbitals. Forbidden polyhedra are thus much more frequent in the case of 
9-vertex polyhedra than in the cases of 7- and 8-vertex polyhedra. In any case, 
the 9-vertex polyhedra are much less interesting mathematically and chemically 
and therefore are not treated in this paper. 

3. Results 

Federico [6] has compiled a list of the combinatorially distinct polyhedra with 
up to 8 faces. Taking the duals [7] of the polyhedra with 7 and 8 faces in his 
compilation leads to the 34 possible polyhedra with 7 vertices and the 257 possible 
polyhedra with 8 vertices. This list was used to check the ideas in the previous 
section of this paper. 

Table 3 summarizes the important properties of all of the 7 and 8 vertex polyhedra 
which cannot be formed from hybrids of s, p, and d orbitals (i.e. the forbidden 
polyhedra). Note that of the 34 polyhedra with 7 vertices only the hexagonal 
pyramid is forbidden. Among the 257 polyhedra with 8 vertices, 12 polyhedra 
are forbidden. 

The following specific information is given in table 3: 
(1) Names of the polyhedra having established names. In most cases, these are 
the polyhedra of greatest chemical interest. 
(2) The identification number used for the dual of the polyhedron in Federico's 
paper [6]. Schlegel diagrams [8] are given for the duals [7] in Federico's paper. 
(3) The symmetry point group of the polyhedron indicating direct product 
structure where it is found. 
(4) The total numbers of vertices (v), edges (e), and faces (f). 
(5) The numbers of vertices vn having degree n. 
(6) The numbers of faces fn with n sides (i.e. f3 is the number of triangular faces, 
f4 is the number of quadrilateral faces, f5 is the number of pentagonal faces, etc.). 
(7) The irreducible representation required for the hybrid orbitals for which 
sufficient s, p, and d orbitals are not available. 
For example, in the case of the D3d bicapped octahedron two A2u orbitals are 
required but the only s, p, and d orbital of this type is the Pz orbital. 

The forbidden polyhedra in Table 3 can be classified into the following 
categories: 
(A) 8-vertex polyhedra having an inversion center: Federico numbers 54 
(hexagonal bipyramid), 57 (bicapped octahedron), 282, 300 (cube), and 163. 
(B1) 8-vertex polyhedra having a primary plane fixing no vertices: Federico 
numbers 245 (3,3-bicapped trigonal prism) and 291. 
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(B2) 8-vertex polyhedra having a primary plane fixing 6 vertices: Federico 
numbers 45 and 74. 
(C) Polyhedra having a 6-fold or higher Cn rotation axis: Federico numbers 19 
(hexagonal bipyramid) and 247 (heptagonal pyramid). 
(D) Other forbidden polyhedra: Federico numbers 191 and 194 corresponding 

to 2 rather unusual C3v 8-vertex polyhedra. 

Some of these polyhedra belong to more than one of the above categories, e.g. 
the cube belongs to categories A and B1 and the hexagonal bipyramid belongs to 
categories A and C. The existence of polyhedra of category D means that the 
presence of an inversion center, a primary plane containing 0 or 6 vertices, and/or  
6-fold or higher rotation axis are sufficient but not necessary conditions for an 
8-vertex polyhedron to be forbidden. 
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